

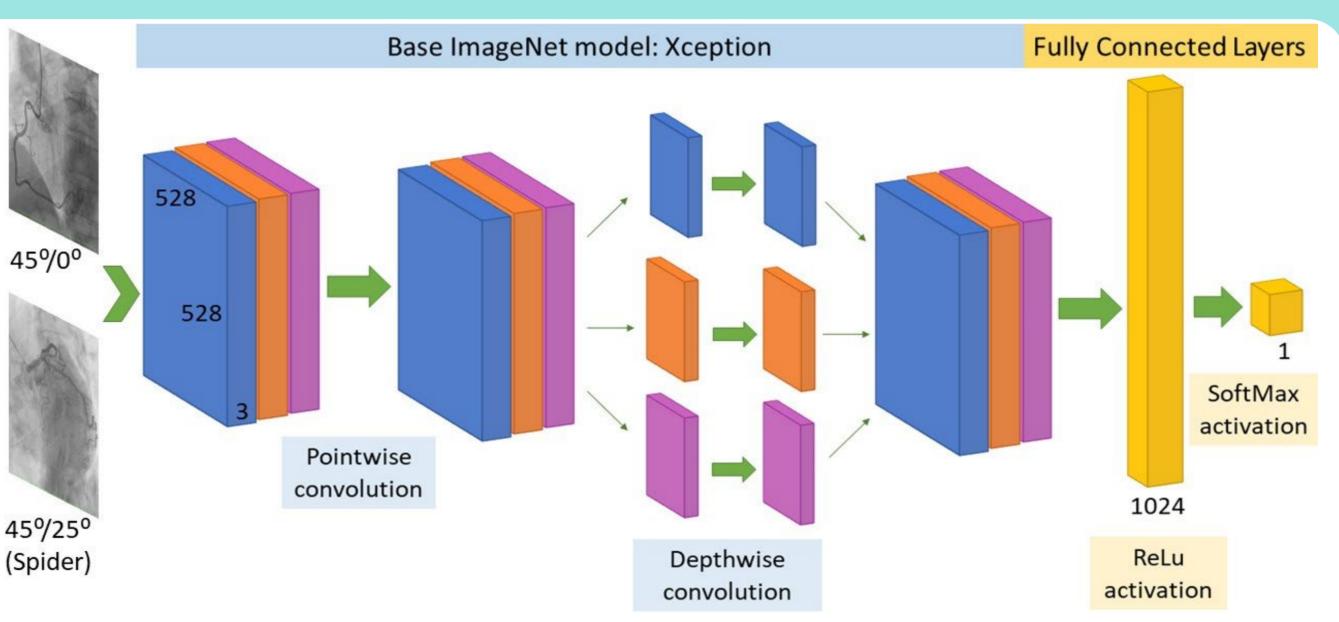
# BARCELONA, 3 AL 7 DE JULIO 2023 CaixaForum Macaya

## Deep learning algorithm to detect coronary artery tortuosity in coronary angiography

### Miriam Cobo Cano<sup>1</sup> (FPU21/04458)

🖄 cobocano@ifca.unican.es

Francisco Pérez-Rojas<sup>2,4</sup>, Constanza Gutiérrez-Rodríguez<sup>2</sup>, Ignacio Heredia<sup>1</sup>, Patricio Maragaño-Lizama<sup>3</sup>, Francisca Yung-Manriquez<sup>2</sup>, José A. Vega<sup>2,4</sup>, Lara Lloret Iglesias<sup>1</sup> <sup>1</sup>Institute of Physics of Cantabria (CSIC-UC); <sup>2</sup>Autonomous University of Chile; <sup>3</sup>Talca Regional Hospital; <sup>4</sup>University of Oviedo


#### CHALLENGE

- Coronary artery tortuosity (CAT) is often an undetected condition in patients undergoing coronary angiography (CAG).
- Detailed knowledge of the morphology of coronary arteries is essential for planning any interventional treatment.
- Objective: develop a deep learning (DL) algorithm capable of automatically detecting CAT in CAG. Assess the performance of the DL algorithm against independent experts' radiological visual examination (RVE).
- Result: DL had comparable sensitivity and specificity with RVE for detecting CAT for a conservative threshold of 0.5. Promising applications in the field of cardiology and medical imaging.

#### **METHODS**

The experimental dataset collected for this retrospective clinical study consisted of 658 CAG images, corresponding to 401 different patients.

**Projection** *#* patients with *#* patients without



|          | coronary artery<br>tortuosity | coronary artery<br>tortuosity |  |
|----------|-------------------------------|-------------------------------|--|
| Left or  | 182                           | 217                           |  |
| Spider   |                               |                               |  |
| Right or | 52                            | 207                           |  |
| 45°/0°   |                               |                               |  |

Table 1. Available images for each angiographic projection.

**5-fold cross-validation models** comprised the DL algorithm. Images were randomly selected (450 for training, 46 validation, 48 testing).

Figure 1. Proposed convolutional neural network architecture for CAT detection.

#### **RESULTS & DISCUSSION**

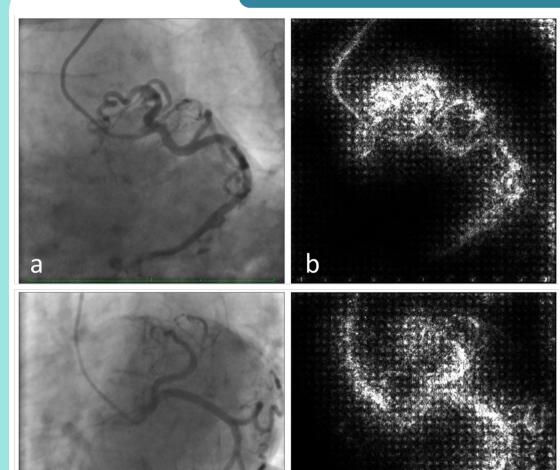
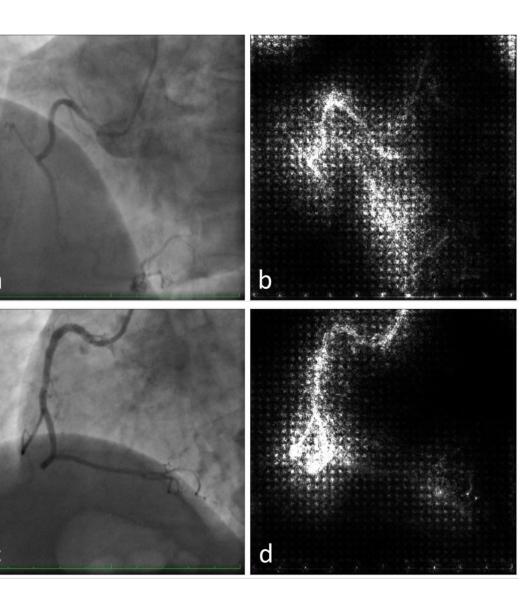




Figure 3. Saliency maps examples of right  $(45^{\circ}/ 0^{\circ})$  coronary angiographies.

Figure 2. Saliency maps examples of left (Spider) coronary angiographies.

a-b. Patient with coronary artery tortuosity. Predicted labels: tortuous (99.8%), non-tortuous (0.2%).
c-d. Patient without coronary artery tortuosity. Predicted labels: non-

tortuous (92.5%), tortuous (7.5%).

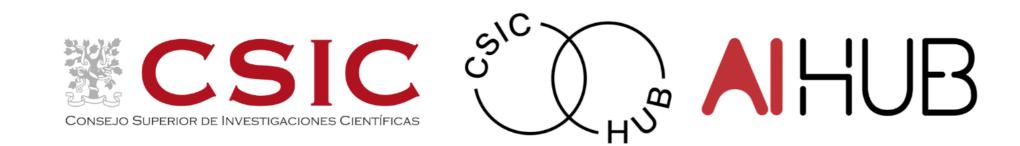


| Metric         | Mean        | SD          | Mean  | SD    |
|----------------|-------------|-------------|-------|-------|
|                | (DL models) | (DL models) | (RVE) | (RVE) |
| Accuracy       | 0.87        | 0.06        | 0.85  | 0.03  |
| Sensitivity    | 0.87        | 0.10        | 0.84  | 0.02  |
| Specificity    | 0.88        | 0.10        | 0.86  | 0.04  |
| PPV            | 0.89        | 0.08        | 0.87  | 0.05  |
| NPV            | 0.88        | 0.09        | 0.84  | 0.02  |
| F <sub>1</sub> | 0.87        | 0.07        | 0.85  | 0.03  |
| AUC            | 0.96        | 0.03        |       |       |

Table 1. Classification metrics for detecting CAT in CAG with DL and RVE.

- The DL algorithm, comprised of 5-fold cross-validation models, has sensitivity and specificity compatible with expert RVE for detecting CAT for a conservative threshold of 0.5.
   Expert cardiologists observe the entire radiographic sequence for visual detection of CAT versus our DL algorithm that performs automated CAT detection from a single representative image of each angiographic projection
  - at the point of maximum arterial filling with contrast material.

a-b. Patient with coronary artery tortuosity. Predicted labels: tortuous (83.9%), non-tortuous (16.1%).
c-d. Patient without coronary artery tortuosity. Predicted labels: non-tortuous (98.9%), tortuous (1.1%).


Selecting the image with the highest contrast is a minor problem, which can be solved with Artificial Intelligence methods or with classical image analysis techniques.
 Future work: increase number of images to evaluate CAG images misclassified by the DL algorithm for further validation.

#### CONCLUSIONS

The DL algorithm can screen to provide the likelihood of a patient being diagnosed with CAT by adapting its threshold.
 Beneficial impact on preventing cardiac lesions, shortening CAG examination times, establishing vascular risks and improving future treatment strategies.

#### REFERENCES

- N. Gaibazzi, et al., "Severe coronary tortuosity or myocardial bridging in patients with chest pain, normal coronary arteries, and reversible myocardial perfusion defects," American journal of cardiology, vol. 108, no. 7, pp. 973–978, 2011.
- M. Konigstein, et al., "Impact of coronary artery tortuosity on outcomes following stenting: a pooled analysis from 6 trials," JACC Cardiovascular Interventions, vol. 14, no. 9, pp. 1009–1018, 2021.
- □ J. Chiha, et al., "Gender differences in the prevalence of coronary artery tortuosity and its association with coronary artery disease," IJC Heart & Vasculature, vol. 14, pp. 23–27, 2017.



